Intelligence is not Artificial

Why the Singularity is not Coming any Time Soon And Other Meditations on the Post-Human Condition and the Future of Intelligence

by piero scaruffi
Cognitive Science and Artificial Intelligence | Bibliography and book reviews | My book on consciousness | Contact/feedback/email

(These are excerpts from my book "Intelligence is not Artificial")

The Robots are Coming - A Brief History of A.I./ Part 3

The story of robots is similar. Collapsing prices and increased speeds have enabled a generation of robots based on relatively old theory. Cynthia Breazeal's emotional robot "Kismet" (2000), Ipke Wachsmuth's conversational agent "Max" (2004), Honda's humanoid robot "Asimo" (2005), Osamu Hasegawa's robot that learned functions it was not programmed to do (2011) and Rodney Brooks' hand programmable robot "Baxter" (2012) look good on video but still look as primitive as Shakey in person. In 2005 the driver-less car Stanley developed by Sebastian Thrun at Stanford won DARPA's Grand Challenge, but that was in the middle of the Nevada desert. A branch of robotics is preoccupied with the self-reconfigurable modular robot, a concept introduced by Toshio Fukuda in Japan with its CEBOT (short for "cellular robot") that was capable of reconfiguring itself ("Self Organizing Robots Based On Cell Structures", 1988). The leadership remained in Japan (for example, Satoshi Murata's modular robotic system M-TRAN of 1999) until Daniela Rus at the MIT, inspired by the art of origami and a math theory by Erik Demaine, invented a robot that folds automatically ("Programmable Matter by Folding", 2010) which led to the self-configuring "M-blocks". Rus is also working on the Robot Compiler: someday we will be able to order a robot for a specific function and the Robot Compiler will 3D-print a custom robot for us.

Manufacturing plants have certainly progressed dramatically and can build, at a fraction of the cost, the tiny sensors and assorted devices that used to be unfeasible and that can make a huge difference in the movements of the robot; but there has been little conceptual breakthrough since Richard Fikes' and Nils Nilsson's STRIPS of 1969 (the "problem solver" used by Shakey). What is truly new is the techniques of advanced manufacturing and the speed of GPUs.

In fact, nothing puts the progress in A.I. (or lack thereof) better in perspective than the progress in robots. The first car was built in 1886. 47 years later (1933) there were 25 million cars in the USA, probably 40 million in the world, and those cars were much better than the first one. The first airplane took off in 1903. 47 years later (1950) 31 million people flew in airplanes, and those airplanes were much better than the first one. The first public radio broadcast took place in 1906. 47 years later, in 1953, there were more than 100 million radios in the world. The first television set was built in 1927. 47 years later (1974) 95% of households in the USA owned a TV set, and mostly a color TV set. The first commercial computer was delivered in 1951. 47 years later (1998) more than 40 million households in the USA had a computer, and those personal computers were more powerful than the first computer. The first (mobile) general-purpose robot was demonstrated in 1969 (Shakey). In 2016 (47 years later) how many people own a general-purpose robot? How many robots have you seen today in the streets or in your office?

In June 2016 the MIT Technology Review had an article about robots that announced: "They're invading consumer spaces including retail stores, hotels, and sidewalks". Look around you: how many robots do you see in the grocery shop and how many robots do you see taking a stroll on the sidewalk? I'll take a wild guess: zero. That's the great robot invasion of 2016, which competes with Orson Welles' famous Martian invasion of 1938 (total number of Martians in the streets of the USA: zero).

Most of the robots that accounted for the $28 billion market of 2015 (Tractica's estimate) were industrial robots, robots for the assembly line, not intelligent at all. Then there are more than ten million iRoomba (the home robot introduced by Rodney Brooks' iRobot in 2002) but those only vacuum floors. Those robots will never march in the streets to conquer Washington or Beijing. They are as intelligent as your washing machine, and not much more mobile.

Willow Garage, founded in 2006 by early Google architect Scott Hassan, has probably been the most influential laboratory of the last decade. They popularized the Robot Operating System (ROS), developed at Stanford in 2007, and they built the PR2 robot in 2010. ROS and PR2 have created a vast open-source community of robot developers that has greatly increased the speed at which a new robot can be designed. Willow Garage shut down in 2014, and its scientists founded a plethora of startups in the San Francisco Bay Area committed to developing "personal" robots.

The field of "genetic algorithms", or, better, evolutionary computing, has witnessed progress that mirrors the progress in neural-network algorithms; notably, in 2001 Nikolaus Hansen introduced the evolution strategy called "Covariance Matrix Adaptation" (CMA) for numerical optimization of non-linear problems. This has been widely applied to robotic applications and certainly helped better calibrate the movements of robots.

There are more than 3,000 DaVinci robots in the hospitals of the world, and they have performed about two million surgeries since 2000, the year when Intuitive Surgical of Sunnyvale was allowed to start deploying it. But DaVinci is only an assistant: it is physically operated by a human surgeon. In 2016, however, Peter Kim of the Children's National Health System in Washington unveiled a robot surgeon, the Smart Tissue Autonomous Robot (STAR), capable of performing an operation largely by itself (although it took about ten times longer than a human surgeon). In 2015 Google and Johnson & Johnson formed Verb Surgical to build robot surgeons.

The most sophisticated robots are actually airplanes. People rarely think of an airplane as a robot, but that's what it is: it mostly flies itself, from take-off to landing. In 2014 the world's airplanes carried 838.4 million passengers on more than 8.5 million flights. In 2015 a survey of Boeing 777 pilots reported that, in a typical flight, they spent just seven minutes manually piloting the airplane; and pilots operating Airbus planes spent half that time.

Therefore robots as "co-pilots" (as augmentation, not replacement, of human intelligence) have been very successful.

The most popular robot of 2016 is, instead, Google's self-driving car (designed by Sebastian Thrun), but this technology is at least 30 years old: Ernst Dickmanns demonstrated the robot car "VaMoRs" in 1986 and in October 1994 his modified Mercedes drove the Autoroute 1 near Paris in heavy traffic at speeds up to 130 km/h. In 2012 Google's co-founder Sergey Brin said Google will have autonomous cars available for the general public within five years, i.e. by 2017. This is what happens when you think you know the future while in reality you don't even know the past. (Incidentally, Google engineers still use the "miles" of the ancient imperial system instead of the kilometers of the metric system, a fact that hardly qualifies as "progress" to me).

Back to the Table of Contents

Purchase "Intelligence is not Artificial"
Back to Cognitive Science | My book on consciousness | My reviews of books | Contact