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Abstract Even after more than a half a century of

research on machine intelligence, humans remain far better

than our strongest computing machines at a wide range of

natural cognitive tasks, such as object recognition, lan-

guage comprehension, and planning and acting in

contextually appropriate ways. While progress is being

made in many of these areas, computers still lack the

fluidity, adaptability, open-endedness, creativity, purpose-

fulness, and insightfulness we associate with the supreme

achievements of human cognitive ability. Reasons for this

and prospects for overcoming these limitations are

discussed.
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Are People Still Smarter than Machines?

In the introductory chapter to Parallel Distributed Pro-

cesssing [18], we began by asking this question:

Why are people smarter than machines?

At the time, it seemed a good and very important question.

The effort to understand and simulate human cognitive

abilities had been underway for over three decades, and

despite initial promise, seemed not to have gotten very far.

To be sure, grand claims had been made. Herbert Simon

speaks in his autobiography [20] of announcing to a class

in early 1953 that ‘Over the Christmas Holidays, Al Newell

and I programmed a computer to think’. And the kind of

‘thinking’ Newell and Simon modeled did produce some

impressive results, including the Lisp-based ‘Macsyma’

[12], a powerful symbolic mathematical system that far

exceeded most human’s ability to solve mathematical

equations. But, as we said on the first page of PDP, the

computers and programs of the 1980s were a long way

from capturing the fluid, adaptive intelligence people

exhibit in a wide range of natural cognitive tasks, including

‘‘perceiving objects in natural scenes and noting their

relations, understanding language and retrieving appropri-

ate information from memory, making plans, and carrying

out contextually appropriate actions.’’

It is now more than 25 years since these words were

written. These years have seen a continuation of the

exponential growth in the speed and scale of computers at

an ever decreasing price. Desktop computers today are

several million times faster and have about 100,000 times

more memory than the first commercially available com-

puter (the IBM 704, which went on the market in 1954 [6]),

yet at the same time they are also about one thousand times

less expensive: The 704 cost two million dollars, and those

desktops go for about two thousand. Let us ask, in this

context:

Is it still true that people are smarter than machines?

And if so: Why?

There’s no doubt that there has been progress since the

early 80s. For example, in chess, the computer now rules.

After some contentious victories and draws in the early

years of this decade, a computer chess system, Deep Fritz,

beat the undisputed world champion Vladimir Kramnik in

2006. Yet even Deep Fritz did not actually learn to play
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chess; instead some of the smartest minds in the world

spent a huge amount of time and money putting together

the hardware and software for Deep Fritz, and it could

easily be argued that Fritz’s play reflects nothing more than

clever human programming combined with brute force and

table lookup.

What about those ‘natural cognitive tasks’ we spoke

about in the first chapter of Parallel Distributed Pro-

cessing? In vision, computational approaches have made

substantial gains. Serre et al. [19] report a neuroscience-

inspired feed-forward neural network architecture that

learns a general-purpose feature ‘dictionary’ using an

unsupervised learning algorithm. This model is then

trained to use the representations learned from unsuper-

vised training to perform an animal/non-animal

categorization task, and, after training, matches human

performance with brief, masked stimuli. Although the

program’s training was tailored to the task, the result is

still impressive, and further progress seems extremely

likely. My impression is that similar progress has occur-

red in the other natural cognitive tasks we mentioned in

our introductory chapter, including language processing

and memory retrieval, as well as planning and action

selection. While I do not think anyone would claim

human-like performance has yet been achieved, I am

actually optimistic that incremental progress is occurring

in all of these areas, at least up to a point.

Yet, it still seems to me there remain some essential

shortfalls in the accomplishments of machine intelligence.

To me, a very important limitation is the narrowness of

focus one sees in systems that have achieved some degree

of artificial intelligence. Consider the computer program I

play bridge with on my computer (I play one hand and it

plays the other three). The program is pretty good, and yet,

there are things it does not take into account that would be

taken into account by human players. In a story I once

heard, an expert player who we will call Dave has just bid

six Hearts, and is about to start play when the director of

the club where he is playing announces ‘last deal’. Another

expert player, Al, from another table that has just finished

its last deal, comes over and looks at the hands of all of the

players, and lingers to observe the play. The player to

Dave’s left makes the opening lead. Dave’s partner is the

dummy. As the dummy lays down his hand, Dave surveys

the situation. It looks like an easy contract. But Dave

notices that, even after the first trick or two, Al is still

hanging around. This makes Dave think: maybe the hand is

not such an easy one after all—if it were, Dave would

surely have lost interest by now. He ponders: what could

conceivably go wrong? Seeing only one possibility—one

that would ordinarily seem remote—he devises a plan of

play that defends against it, and makes his contract. His

opponents are outraged, and complain to the director. But

the director can do nothing, since Al never said or did

anything.1

The story illustrates how humans can bring information

from outside a domain to think and reason within it. Few

computer programs could do that. Had my computer pro-

gram been playing Dave’s position, it would not have been

aware of the presence of the other player and it would not

have known how to use that player’s presence even if that

information was available to it.

This example illustrates a natural characteristic of

human thinking: any source of information can play a role

in constraining the inferences and plans we make when we

make decisions and plan actions. Even the best current

cognitive architectures, like ACT-R or SOAR, lack the

ability to exploit this kind of situation. Consider the fol-

lowing rule that one might try to write into a computer

program in an attempt to overcome this problem: ‘‘Always

consider whether there is any aspect of the current situation

that could provide a hint as to an unanticipated complica-

tion.’’ It would be an exciting advance to have a computer

program that could evaluate such an open-ended proposi-

tion. But this means allowing anything at all to come into

play, and appears to leave the computer program in an

exhaustive search for all possible inferences of all possible

aspects of a situation all of the time. It does not seem likely

that this is the way the human mind solves the problem.

Why are People Still Smarter than Machines?

While humans certainly have their shortcomings, the com-

putational approaches that I am familiar with lack the open-

ended characteristic of human cognitive abilities illustrated

by the example described above, and still depend heavily on

the human programmer. I am guessing that few would doubt

they also still lack the fluidity, adaptability, creativity, pur-

posefulness, and insightfulness we associate with the

supreme achievements of human cognitive ability. While I

would not take a strong position of this kind, it seems fairly

easy to argue that the real intelligent agent in most artificial

intelligence is still the human programmer. Viewed in this

way, computers remain, for now, fundamentally nothing

more than tools in the hands of their human designers and

users, and not autonomous, independent, self-directed,

thinking beings, like people.

Why do artificial intelligent systems still have these

limitations? One might try to make the case that the

problem is still one of sheer computational power. It is

1 I have heard this story somewhere, but cannot be sure of the source.

Perhaps it was in a seminar at MIT in fall of 1982, taught by Jerry

Fodor. He certainly would have supported the point that human

thought is unlimited in the kind of information it can exploit in

reasoning and problem solving.
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widely noted that the human brain contains 1011 neurons

and 1015 synapses, and that synapses carry out floating

point operations (e.g., multiplying an incoming activation

signal times the connection weight) at a temporal resolu-

tion approaching about 1000 Hz. That comes to 1018

multiplies per second.2 Both IBM and Sun claim to have

broken the petaflop barrier (1015 flops per second, CBC

News Online, June, 2007 [3]); but that is still three orders

of magnitude slower than real time—meaning simulation

of 10 min of human cognition would require a full week on

such a computer. How quickly supercomputer power

actually doubles (and whether the machoflops reported by

vendors have any relation to actual performance in real

situations) is a matter of debate. If speeds continue to

double every 2 years, we should reach the exaflop (1018)

level before 2030—so maybe by then we will be able to

capture the full scope and scale of human cognitive

abilities.

More computer power might be helpful, but it seems

pretty clear that this alone will not be sufficient. What other

kinds of progress will be necessary? I discuss four that

seem most important, drawing on Marr’s [11] three

well-known levels, but adapting one of them and adding a

fourth that is likely to become more and more relevant.

Computational Theory

Marr’s three level taxonomy gave cognitive scientists an

easy handhold for distinguishing between the fundamental

nature and goals of their computational models on the one

hand and the algorithms and implementations they use on

the other. He also encouraged focus on the computational

level itself, something that has continued to gain in

importance. The question: ‘‘What information is available

in the environment, and how can it be optimally used’’

remains a key question in natural task domains like vision

and speech perception. Too often, computer scientists

interested in cognitive processes as well as cognitive psy-

chologists interested in computational models have not

focused their attention on this question, as Marr so aptly

pointed out. And, in spite of considerable progress, we are

still a long way from understanding what information is in

the stimulus. A simple case in point can perhaps help bring

this out. Suppose you see two line segments protruding

from either side of an occluder—should you infer that they

are connected behind the occluder or not? In the past,

researchers investigating this question based their theories

on intuitive heuristics that they could turn into equations

(e.g., the principle of minimum curvature). More recently,

Geissler and Perry [4] have carried out an extensive anal-

ysis of the relevant natural scene statistics. Looking at the

photographs of natural scenes, they determined the condi-

tional probability that in fact two segments intersecting the

same occluder were parts of the same underlying edge as a

function of several scene variables. The pattern in these

conditional probabilities did not exactly match any of the

existing models. And in a follow-up psychophysical

experiment, perceiver’s judgments matched the scene sta-

tistics, not the existing models. This is a tiny example, but

one that helps to bring home how much there is to

understand about the relationship between stimulus vari-

ables and underlying reality. If we are to understand

cognitive computation fully, there will be a continuing

need to focus on this crucial kind of question.

It should be noted that the issues here are far from

trivial. It is very difficult to know exactly how to frame the

computational problem. To underscore this point, consider

a cognitive system faced with a series of situation–conse-

quence observations in some domain, and let us assume we

all agree that it would be a good thing if the system could

use the data to learn something about the relationship

between situations and consequences. How best should we

construe what should be learned in this situation? Currently

in the field of cognitive science, there are two views on this

question. One holds that we should construe the learner’s

goal as one of extracting a structured statistical model of

the environment—one that explicitly attempts to find the

best type of structure to represent the data, and within this

the best instance of a structure of a given type [9]. An

alternative to this, however, is the position that any tax-

onomy of alternative types will always provide at best only

an approximate characterization of natural structure, so that

it is better to define the goal more directly in terms of the

problem of optimal prediction, allowing the internal model

to remain inchoate instead of explicit (as in a neural net-

work representation; see [17], for further discussion). Both

of these ideas require further exploration, and their rela-

tions to each other remain to be fully explored. As they

currently are construed, the former approach may impose

too much constraint, while the latter may impose too little.

A deep computational analysis of how constraints can

effectively guide the search for optimal solutions to

learning problems will surely continue to be an important

topic of investigation. There has been some progress on

this hard problem (e.g., [23]), but more work is clearly

necessary; as things stand, we have guidance on the use of

relatively flat solutions to prediction problems, but flat

solutions are unlikely to be fully satisfactory, and we have

only very small initial steps toward understanding how to

guide the search for the right kinds of inchoate multilevel

representations.

2 Only a sub-set of synapses are active during any given millisecond.

On the other hand I am leaving out all of the post-synaptic integration,

synaptic change, and modulatory influences, not to speak at all of the

homeostatic processes continually at play, and so I will stick with the

1018 figure as a useful approximation.
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Algorithm and Representation

We all need to know what information is in the stimulus

and what constitutes the best policy in using it, but that

does not mean that we know how a computational mech-

anism can actually exploit the information effectively. Just

what are the best algorithms and representations to use for

this purpose?

The debate mentioned above between the more and less

structured approaches to define the problem predisposes

toward alternative solutions—both of which are computa-

tionally intensive. One approach leads to the use of

Markov–Chain Monte Carlo search methods, while the

other leads to the use of approximate gradient-based

approaches like those instantiated in contemporary ver-

sions of neural network models, including Deep Belief

Networks [2, 5, 16].

To me, an exciting frontier in computational cognitive

modeling is the exploration of the computational basis of

the characteristics of brain representations, as these have

been revealed by recordings from single neurons, and,

more recently, from many individual neurons at the same

time. There have been exciting developments showing how

low-level representations in the visual system [15] and

more recently the auditory system [21] can be seen as

natural solutions discovered in response to the structure of

natural visual and auditory stimuli, and the approach is

now being extended to address representations at deeper

levels of the processing hierarchy [8].

Architecture

Since fairly early in the days of artificial intelligence, a

topic in computational approaches to cognition has been

the question of ‘the cognitive architecture.’ An emphasis

on this issue may be one of the primary legacies of the

work of Newell and Simon at Carnegie Mellon (see espe-

cially [13, 14]). Some such architectures (e.g., ACT-R, [1])

are primarily intended for use in modeling human cogni-

tion, while others (e.g., SOAR, [10, 14]) are primarily used

as tools for building state-of-the-art artificial cognitive

systems. A common theme in the human cognitive mod-

eling literature is to stress some sort of hybrid combination

of explicit symbolic and implicit, more connectionist-like,

sub-symbolic components [22]. A very recent example of

this is SAL, an explicit merger of John Anderson’s ACT-R

model and Randy O’Reilly’s LEABRA architecture [7]. I

myself envision a future architecture that is fundamentally

sub-symbolic throughout, but which carries out cognitive

processes we now envision as symbolic as emergent con-

sequences of the sub-symbolic computations.

One thing that is striking about the approaches described

above is that they all rely on the conventional von

Neumann computer as the actual underlying computer

architecture. Although visionaries have dreamed of fun-

damentally more parallel and/or brain-like computational

systems for quite some time, continual exponential growth

in speed and memory capacity have thus far allowed the

von Neumann architecture to provide the actual bedrock of

most computational models of human cognition, albeit with

some degree of multi-processing. However, we may be

approaching a singularity is this regard. I have recently

been involved in discussions of four very different

approaches to a radical reorganization of computation to

support truly parallel and interactive processing; and neu-

romorphic engineering, pioneered by Carver Mead at

Caltech over 20 years ago, appears finally to be taking off

[24, 26]. It may well be, then, that over the next decade, the

butterfly will finally emerge from the chrysalis, and truly

parallel computing will take flight.

Nurturance, Culture, and Education

Future improvement in our understanding of the funda-

mental computational challenges facing cognitive systems,

in the algorithms and representations we use to address these

challenges, and in the architecture on which these algorithms

and representations run are all very likely, and they all seem

essential for progress in understanding cognitive computa-

tion. Another, additional, step that is needed is to understand

the roles of nurturance, culture, and education in structuring

human cognitive abilities. Human mental abilities are pro-

foundly shaped by experience, and that experience is

structured by social, cultural, and governmental institutions.

Even in the first few months of life, when the child is nurtured

primarily in the informal social and cultural context of the

immediate family, many important changes occur in the

child’s cognitive, social, emotional, and linguistic capacities

that are crucially dependent on the child’s experience. The

effort to understand how human cognitive abilities arise will

depend heavily on taking full account of these influences,

and success in achieving true human-like intelligence in

artificial systems may rely on the creation of systems that can

exploit these influences (see [25]).
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